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Abstract

An alternative methodology is described for Large-Eddy Simulation of flows involv-

ing shocks, turbulence and mixing. In lieu of filtering the governing equations, it is

postulated that the large-scale behavior of an “LES” fluid, i.e., a fluid with artifi-

cial properties, will be similar to that of a real fluid, provided the artificial prop-

erties obey certain constraints. The artificial properties consist of modifications to

the shear viscosity, bulk viscosity, thermal conductivity and species diffusivity of a

fluid. The modified transport coefficients are designed to damp out high wavenum-

ber modes, close to the resolution limit, without corrupting lower modes. Requisite

behavior of the artificial properties is discussed and results are shown for a variety

of test problems, each designed to exercise different aspects of the models. When

combined with a 10th-order compact scheme, the overall method exhibits excellent

resolution characteristics for turbulent mixing, while capturing shocks and material

interfaces in crisp fashion.
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1 Introduction

The computational technique of Large-Eddy Simulation (LES) was invented

by meteorologists in the 1960s [Smagorinsky, 1963, Lilly, 1967, Deardorff, 1970]

as a means of representing very high Reynolds number flows on very coarse

grids. The method stands in contrast to Direct Numerical Simulation (DNS),

where the range of scales is limited to what can be fully represented on the

mesh. The standard approach to deriving the LES equations is to apply a low-

pass spatial filter to the Navier-Stokes equations in order to remove unresolv-

able scales of motion. This is typically done without specifying the exact form

of the filter function. The LES filter however, must obey certain constraints;

e.g., the transfer function must be identically zero for all wavenumbers above

kq = π/∆, where ∆ is the grid spacing. This requirement stems from the

fact that the computational grid does not support wavenumbers outside the

Nyquist interval. If this requirement is not met, then the spectral content

of the discrete variables will be aliased with respect to the filtered variables

[Shannon, 1949]. Unfortunately, it is not possible to meet this Fourier-space

cut-off with a filter that remains positive-definite in physical space; i.e., any fil-

ter satisfying the Nyquist limit will contain negative lobes in real space. This

has the unpleasant side effect of generating filtered values outside physical

bounds. For example, to ensure that mass fractions remain between zero and

one, the real-space filter must strictly reside between zero and one. A more

catastrophic potential of non-positive filters is that they can admit negative

densities, which can cause a code to fail when, e.g., velocity is computed from

momentum. This situation does not occur in the Reynolds-Averaged Navier-

Stokes (RANS) approach, because ensemble averages are bounds preserving.
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Given that the aliasing and bounds constraints cannot both be met by a filter

of convolution type, the question then is how to provide an inner-scale cutoff,

such that the flow remains smooth with respect to the grid scale. One solu-

tion is to integrate the equations between grid points to directly generate a

set of 2nd-order finite-difference equations. Such is the approach of Implicit

Large-Eddy Simulation (ILES) [Schumann, 1975, Fureby and Grinstein, 2002,

Margolin and Rider, 2002, 2005, Hickel et al., 2006]. This practice introduces

two-dimensional cell-face averages as well as three-dimensional cell-volume av-

erages, which must be related to each other. Typically, this is done implicitly

via a numerical reconstruction scheme in one dimension, combined with op-

erator splitting for multi-dimensional simulations. The truncation error of the

numerical scheme can be designed to have desirable dissipative properties for

turbulence. Much has been accomplished with ILES and the method appears

to be growing in popularity; however, it is restricted to low-order upwind

schemes with large dissipation and dispersion errors compared to spectral and

compact schemes, which possess superior resolution characteristics for turbu-

lence [Orszag and Patterson, 1972, Gottlieb and Orszag, 1977, Ghosal, 1995,

Kravchenko and Moin, 1997]. Furthermore, since ILES dissipation is typically

tied to differences in reconstruction on either side of a cell face, the method

can be highly susceptible to grid imprinting.

The objective of this work is to introduce a methodology for LES which allows

freedom to choose high-fidelity numerical schemes. Rather than modifying the

governing equations or working directly with finite-difference equations, the

fluid transport coefficients are altered to provide the sharpest possible cut-off

near the Nyquist wavenumber. This work extends previous work on hyper-

viscosity [Cook and Cabot, 2004, 2005, Fiorina and Lele, in press] to include
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hyperconductivity for contact discontinuities and hyperdiffusivity for material

interfaces. At the risk of crowding the LES field with yet another acronym, the

method will be referred to as Artificial-Fluid Large-Eddy Simulation (AFLES).

The outline of this paper is as follows. In Section 2 the governing equations for

compressible turbulent mixing are laid out in strong conservation-law form.

In Section 3, models are presented for the artificial fluid properties. In Section

4, the numerical solution technique is outlined. Section 5 describes results on

a variety of test problems and Section 6 presents conclusions regarding the

AFLES methodology.
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2 Governing Equations

Compressible flows comprised of N miscible fluids can be described by the

following equations:

∂ρYi

∂t
+∇ · (ρYiu + Ji) = 0 , i = 1, 2, ..., N , (1)

∂ρu

∂t
+∇ · [ρuu + pδ − τ ] = 0 , (2)

∂E

∂t
+∇ · [(E + p)u− τ · u + q] = 0 , (3)

where ρ is density, Yi is the mass fraction of species i, u ≡ ∑N
i=1 Yiui is velocity

(with ui being species velocity), Ji ≡ ρYi(ui − u) is a diffusive mass flux, p is

pressure, δ is the unit tensor, τ is the viscous stress tensor, E ≡ ρ(e+u ·u/2)

is total energy (with e being internal energy) and q is the heat conduction

flux. For Newtonian fluids, the viscous stress tensor is

τ = µ(2S) + (β − 2

3
µ)(∇ · u)δ , (4)

where µ is dynamic (shear) viscosity, β is bulk viscosity and S is the symmetric

strain rate tensor,

S ≡ 1

2
(∇u + u∇) , (5)

where u∇ denotes the transpose of ∇u. The conductive heat flux vector is

described by Fourier’s law,

q = −κ∇T , (6)
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where κ is thermal conductivity and T is temperature. The inter-diffusion

energy flux and the diffusion-thermo (Dufour) energy flux are both neglected

in (3). The diffusive mass fluxes can be approximated by

Ji ≈ −ρ


Di∇Yi − Yi

N∑

j=1

Dj∇Yj


 , (7)

where Di is a species diffusion coefficient. In this Fickian approximation, pres-

sure and temperature (Soret) forces are neglected and the multi-component

fluid is regarded as a binary mixture of species i and a complementary com-

posite species composed of all other materials [Hirschfelder et al., 1954, Bird

et al., 1960, Williams, 1985]. The last term in (7) is included to ensure that

∑N
i=1 Ji = 0.

For the test problems herein, all fluids are taken to be ideal gasses with the

same constant ratio of specific heats. Pressure and temperature are thus com-

puted as

p = (γ − 1)ρe , (8)

T = (γ − 1)e/R , (9)

where

R = Ro

N∑

i=1

Yi

Mi

(10)

is the apparent gas constant with Ro being the universal gas constant and Mi

being species molecular weight.
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3 Artificial Fluid Properties

The AFLES technique is based on adding grid-dependent components to the

transport coefficients appearing in (4), (6) and (7); i.e.,

µ = µf + µ∗ , (11)

β = βf + β∗ , (12)

κ = κf + κ∗ , (13)

Di = Df,i + D∗
i , (14)

where the f subscripts denote fluid properties and the asterisks denote arti-

ficial properties. Like fluid properties, artificial properties are required to be

both positive definite and frame invariant. Furthermore, they are required to

carry over to the incompressible limit; e.g., viscosity cannot depend on sound

speed. Unlike fluid properties, artificial properties are designed to vanish in

smooth regions while providing strong damping near discontinuities. The fol-

lowing models satisfy all of these requirements:

µ∗ = Cµρ |∇rS|∆(r+2) , (15)

β∗ = Cβρ |∇rS|∆(r+2) , (16)

κ∗ = Cκ
ρcs

T
|∇re|∆(r+1) , (17)

D∗
i = CD|∇rYi|∆

(r+2)

∆t
+ CY {[Yi − 1]H(Yi − 1)− Yi[1−H(Yi)]}∆2

∆t
, (18)

where S = (S : S)1/2 is the magnitude of the strain rate tensor, ∆ =

(∆x∆y∆z)1/3 is the local grid spacing, cs is sound speed, ∆t is the time step
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and H is the Heaviside function. The polyharmonic operator, ∇r, denotes

a series of Laplacians, e.g., r = 4 corresponds to the biharmonic operator,

∇4 = ∇2∇2. This operator imbues the models with kr wavenumber damping,

similar to a spectral vanishing viscosity [Tadmor, 1989, Karamanos and Kar-

niadakis, 2000]. The overbar (f) denotes a truncated-Gaussian filter, defined

as

f(x) =

L∫

−L

G(|x− ξ|; L)f(ξ)d3ξ , (19)

where

G(ζ; L) =
e−6ζ2/L2

∫ L
−L e−6ζ2/L2dζ

, L = 4∆ . (20)

This filter eliminates cusps introduced by the absolute value operator, which

in turn, ensures that the artificial transport properties are positive definite.

For Cartesian grids, (19) can be applied sequentially along each grid line as

f j =
3565

10368
fj +

3091

12960
(fj−1 + fj+1) +

1997

25920
(fj−2 + fj+2)

+
149

12960
(fj−3 + fj+3) +

107

103680
(fj−4 + fj+4) . (21)

The nondimensional constants appearing in (15)-(18) depend on r (except

for CY ), but do not require adjustment from flow to flow. Setting r = 4,

the following values have been found to work well for a wide variety of test

problems: Cµ = 0.002, Cβ = 1, Cκ = 0.01, CD = 0.003 and CY = 100. Except

where otherwise noted, these values were used for all the the test problems

herein.

The second term in the model for D∗
i has been found very helpful in keeping

mass fractions between 0 and 1. It should be mentioned that for (18) to be
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Galilean invariant, ∆t must be chosen independently of u. This is typically

not the case when utilizing the CFL stability criterion. Nevertheless, (18) has

been found to be quite useful in practice, since it removes ringing at material

interfaces over a minimal number of timesteps.
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4 Numerical Solution Technique

4.1 Spatial Differencing

For the AFLES method described herein, all first derivatives comprising the

gradient and divergence operators in the governing equations are computed

according to the 10th-order compact scheme [Lele, 1992]

βf ′j−2 + αf ′j−1 + f ′j + αf ′j+1 + βf ′j+2

= a
fj+1 − fj−1

2∆
+ b

fj+2 − fj−2

4∆
+ c

fj+3 − fj−3

6∆
, (22)

where f ′j represents the derivative of f at node j, ∆ is the spacing between

nodes and

α =
1

2
, β =

1

20
, a =

17

12
, b =

101

150
, c =

1

100
.

Similarly, all second derivatives (f ′′j ), comprising the polyharmonic operators

in the artificial fluid properties, are computed according to the 10th-order

compact scheme

βf ′′j−2 + αf ′′j−1 + f ′′j + αf ′′j+1 + βf ′′j+2

= a
fj+1 − 2fj + fj−1

∆2
+ b

fj+2 − 2fj + fj−2

4∆2
+ c

fj+3 − 2fj + fj−3

9∆2
, (23)

where

α =
334

899
, β =

43

1798
, a =

1065

1798
, b =

1038

899
, c =

79

1798
.
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4.2 Temporal Integration

The governing equations are advanced in time by casting them all in the form

Φ̇ = F and integrating via a five-step 4th-order Runge-Kutta (RK4) method

derived by Kennedy et al. [1999]. The scheme is

Qη = ∆tF η−1 + AηQη−1

Φη = Φη−1 + BηQη

η = 1, ..., 5 (24)

where ∆t is the time step, η is the RK4 subcycle, and Aη and Bη are:

A1 = 0

A2 = −6234157559845/12983515589748

A3 = −6194124222391/4410992767914

A4 = −31623096876824/15682348800105

A5 = −12251185447671/11596622555746

B1 = 494393426753/4806282396855

B2 = 4047970641027/5463924506627

B3 = 9795748752853/13190207949281

B4 = 4009051133189/8539092990294

B5 = 1348533437543/7166442652324 .
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The fraction of ∆t for which the solution advances after each substep is:

η = 1 ⇒ 494393426753/4806282396855

η = 2 ⇒ 4702696611523/9636871101405

η = 3 ⇒ 3614488396635/5249666457482

η = 4 ⇒ 9766892798963/10823461281321

η = 5 ⇒ 1 .

This particular RK4 scheme was chosen for its broad stability properties for

both convective and viscous terms. Partial de-aliasing is accomplished by ap-

plying an 8th-order compact filter to the conserved variables ρYi, ρu and E

after each RK4 substep. The compact filter is designed to remove the top 1/10

of the wavenumbers in as sharp a manner as possible, such that results remain

independent of the frequency of filter application (which depends on ∆t). The

filter stencil is

βf̂j−2 + αf̂j−1 + f̂j + αf̂j+1 + βf̂j+2 = afj +
b

2
(fj−1 + fj+1)

+
c

2
(fj−2 + fj+2) +

d

2
(fj−3 + fj+3) +

e

2
(fj−4 + fj+4) , (25)

where f̂j is the filtered variable and

α = 0.66624 , β = 0.16688 , a = 0.99965 ,
b

2
= 0.66652 (26)

c

2
= 0.16674 ,

d

2
= 4× 10−5 ,

e

2
= −5× 10−6 . (27)

This compact filter helps prevent the artificial fluid properties from becoming

too large. For example, without this filter, β∗ can become extremely large in
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the vicinity of strong shocks, thus driving the viscously stable timestep to zero

and bringing the simulation to a halt.

4.3 Stability

The maximum stable time step is limited not only by the inviscid CFL con-

dition [Anderson et al., 1984],

∆tCFL = MIN

( |u|
∆x

+
|v|
∆y

+
|w|
∆z

+ cs

√
1

∆x2
+

1

∆y2
+

1

∆z2

)−1

, (28)

where (u, v, w) = u, but also by the maximum viscosity, conductivity and

diffusivity existing in the domain. Time scales associated with µ, β, κ and Di

are:

∆tµ = MIN

(
ρ∆2

µ

)
, (29)

∆tβ = MIN

(
ρ∆2

β

)
, (30)

∆tκ = MIN

(
ρc2

s∆
2

κT

)
, (31)

∆tD = MIN

(
∆2

Di

)
. (32)

The simulation time step is chosen to be

∆t = MIN(∆tCFL, 0.2∆tµ, 0.2∆tβ, 0.2∆tκ, 0.2∆tD) . (33)
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5 Results

The test problems in this section were selected to individually assess the effi-

cacy of µ∗, β∗, κ∗ and D∗
i for capturing turbulent mixing with shocks and other

discontinuities. All problems were run in exactly the same manner, using the

default values of the model coefficients and setting µf = βf = κf = Df,i = 0.

All problem specifications are in cgs units.

5.1 Taylor-Green Vortex

The ability of µ∗ to accurately capture the evolution of the energy spectrum in

high-Reynolds-number decaying turbulence has been previously demonstrated

[Cook and Cabot, 2005]. As a further test of the ability of µ∗ to resolve small-

scale turbulence, we here consider the Taylor-Green vortex [Taylor and Green,

1937]. The initial conditions are:

ρ = 1 ,

u = sin(x) cos(y) cos(z) ,

v = − cos(x) sin(y) cos(z) ,

w = 0 ,

p = 100 + {[cos(2z) + 2][cos(2x) + cos(2y)]− 2}/16 ,

γ = 5/3 .

(34)
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where the pressure corresponds to the incompressible flow solution. The arbi-

trary constant of 100 is selected to make the Mach number very low, such

that the incompressible solution can be used for comparison. As the flow

evolves, the vortex stretches and bends, thus broadening the spectrum to in-

clude higher wavenumbers. Stretching and bending of vortex lines constitute

key energy cascade mechanisms in turbulent flows. The computational domain

is a triply-periodic (2π)3 box on a 643 grid. Figure 1 shows normalized total

enstrophy, i.e., Ω(t)/Ω(0), where

Ω(t) =
1

2

∫

V

ω · ω dV , ω = 5× u .

Two ILES schemes are included for comparison: a Piecewise Liner MUSCLE

Direct Eulerian (PLMDE) scheme [Colella, 1985] and an Arbitrary Lagrangian

Eulerian (ALE) method [Marinak et al., 2001]. The theoretical result [Brachet

et al., 1983], accurate up to about t = 3.5, is plotted in order to assess the

ability of each method resolve small-scale vortex dynamics. Analysis based on

Padé approximants and the behavior of the analyticity strip, predicts Ω(t) will

become far too large to capture on a such a coarse grid [Morf et al., 1980];

nevertheless, the ability of a scheme to track the enstrophy curve, as well as the

maximum enstrophy that a scheme is able to generate, provide stringent tests

of resolving power. The AFLES method is seen to have much better resolution

characteristics that either of the ILES methods. For further comparison, the

normalized kinetic energy, i.e., K(t)/K(0), where

K(t) =
1

2

∫

V

ρu · u dV ,

is plotted in Fig. 2. The AFLES method is better able to preserve kinetic

energy as it cascades toward small scales.
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Fig. 1. Normalized enstrophy versus time for the Taylor-Green vortex. Simulations

were conducted in a 2π3 periodic box using 643 grid points.

5.2 Sedov Blast Wave

In previous studies, the model for β∗ was demonstrated to provide O(r) con-

vergence for smooth flow [Cook and Cabot, 2004] and capture shocks in ap-

proximately 3 grid points, regardless of shock strength [Fiorina and Lele, in

press]. In order to assess the ability of β∗ to capture shocks in a sharp and

monotonic fashion in multiple dimensions, we consider the Sedov-Taylor-von

Neumann blast wave [Sedov, Taylor, 1950, Landau and Lifshitz, 1959]. The

16



0 1 2 3 4 5 6 7 8 9 10
Time

0.4

0.5

0.6

0.7

0.8

0.9

1

K
in

et
ic

 E
ne

rg
y

solution
AFLES
PLMDE
ALE

Fig. 2. Normalized kinetic energy versus time for the Taylor-Green vortex. Simula-

tions were conducted in a 2π3 periodic box using 643 grid points.

initial conditions are:

ρ = 1 ,

u = 0 ,

e = 0.1528415451 exp(−R2/ε2) / ε3 , ε = 0.04 ,

γ = 1.4 ,

where R =
√

x2 + y2 + z2 is radius. The exponential is employed to approxi-

mate a delta function on a discrete mesh. The computational domain consists
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of a uniform Cartesian mesh centered about the origin. Simulations were car-

ried out at two resolutions, using a 1283 grid (∆ = 0.02) and a 2563 grid

(∆ = 0.01). The results for the density field are displayed in Fig. 3, where the

scheme is seen converging to the correct solution. A challenging aspect of this

problem is that the blast wave leaves behind a vacuum at the origin. Never-

theless, the AFLES method captures the shock in a crisp angle-independent

fashion. Furthermore, integration over the box shows mass, momentum and

total energy to be conserved to more than 8 digits.

5.3 Contact Discontinuities

The need to treat temperature discontinuities independently of shocks was

pointed out by Fiorina and Lele [in press]. Initial conditions, radiation effects

and chemical reactions are all capable of producing steep temperature gradi-

ents in a smoothly varying velocity field. In order to assess the ability of κ∗

to capture such gradients, we consider a quiescent fluid containing a jump in

entropy. The initial conditions are:

ρ = 0.1 + 0.9H(x) ,

u = 0 ,

p = 1× 1010 ,

γ = 5/3 .

For a nonconducting fluid, this one-dimensional flow should remain fixed at its

initial state. Figure 4 shows results of the AFLES method with and without the

thermal conductivity model. Without the model (Cκ = 0), Gibbs oscillations,
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introduced by the compact difference and filter stencils, remain undamped.

By including the model, the oscillations are removed and the discontinuity is

spread over 4 to 5 grid points. Once the discontinuity has been sufficiently

smoothed, the model essentially turns off, preventing further spreading.

Given that κ∗ is necessary for treating jumps in temperature (which remain

unaffected by µ∗ and β∗), the question arises as to how to determine an upper

bound on Cκ to ensure that the model is not excessively dissipative. To answer

this question, we turn to the one-dimensional Shu-Osher problem [Shu and

Osher, 1989]. The initial conditions are:

ρ = 3.857143 , p = 10.33333 , u = 2.629369 for x < −4 ,

ρ = 1 + 0.2 sin(5x) , p = 1 , u = 0 for x ≥ −4 ,

γ = 1.4 .

As the shock propagates into the sinusoidal density field, it leaves a steeply

undulating flow in the post-shock region. The post-shock undulations are ex-

tremely sensitive to thermal conduction, as demonstrated in Fig. 5, which

shows AFLES results for three different values of Cκ. With the default value

of Cκ = 0.01, the post-shock solution remain nearly identical to the case with

no artificial thermal conductivity (Cκ = 0). Increasing Cκ to 0.1 however,

causes noticeable damping of the undulations.

5.4 Material Interfaces

For flows involving more than one fluid, artificial diffusivity is necessary to

avoid ringing in the mass fractions. In order to assess the ability of D∗
i to
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capture material interfaces, we first consider the simple case of two adjacent

fluids in thermodynamic equilibrium. The initial conditions are:

ρ = 1 ,

u = 0 ,

p = 1× 1010 ,

Y1 = H(x) ,

Y2 = 1− Y1 ,

γ = 5/3 .

For immiscible fluids, this one-dimensional problem should remain fixed at

its initial state. Numerically, the compact stencils generate Gibbs oscilla-

tions about the step function, which are strongly damped within the first

few timesteps. This process is illustrated in Fig. 6, which displays Y1 versus

x at t = 0, ∆t, 2∆t, 3∆t, 10∆t and 1000∆t. The diffusivity model eliminates

virtually all ringing within the first 3 timesteps and then effectively turns off,

leaving the interface nearly frozen, as evidenced by the profile after a thou-

sand steps. This behavior is independent of the grid spacing and the size of the

timestep. The artificial diffusivity spreads interfaces over about 4 grid points

within 3 or 4 timesteps and then vanishes to prevent further spreading.

In order to test the diffusivity model in the presence of strain, we consider the

deformation of a circular blob of material in a time-reversing vortex. Following

Leveque [1996] and Rider and Kothe [1998] the velocity field is prescribed for
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all time as

u = − sin2(πx) sin(2πy) cos(πt/tp) ,

v = sin2(πy) sin(2πx) cos(πt/tp) ,

tp = 4 ,

with the blob of material initialized as

Y1 = {1 + erf[(R− 0.15)/ε]}/2 ,

R = [(x− 0.5)2 + (y − 0.75)2]1/2 ,

ε = 0.01 .

The ε parameter imparts a thickness to the material interface to avoid initial

ringing. This temporally periodic flow stretches the circular blob into a spiral,

then returns to its initial conditions whenever t reaches integer multiples of

tp. This process is illustrated in Fig. 7, which shows the blob repeatedly spi-

raling inward, then returning to its initial state. The straining action causes

the interface to thin down to about 3 or 4 grid points, at which point the

artificial diffusivity turns on to prevent further thinning (which would gener-

ate ringing). The amount of mixed fluid produced through artificial diffusion

depends on ε, tp and ∆; however, for any given set of these parameters, the

model becomes active only where necessary to prevent spurious oscillations in

the mass fractions.
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Fig. 3. Density on the z = 0 plane for the Sedov-Taylor-von Neumann blast wave

at t = 1. White corresponds to ρ = 0, whereas black corresponds to ρ = 6. The top

image is AFLES with ∆ = 0.02, the middle image is AFLES with ∆ = 0.01 and the

bottom image is the solution.
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Fig. 4. Temperature at t = 1× 10−5 for the quiescent contact discontinuity using a

grid resolution of ∆ = 0.01.
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∆ = 0.05.
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Fig. 6. Evolution of mass fraction interface for two adjacent quiescent fluids.
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Fig. 7. Scalar advection in a time-reversing vortex.

26



6 Conclusions

Spectral-like models have been introduced for the shear viscosity, bulk viscos-

ity, thermal conductivity and species diffusivity of an artificial, “LES”, fluid.

The models impart a high wavenumber, κr, weighting to the numerical dissi-

pation, thus preserving fidelity at resolved wavenumbers. The models act like

switches, turning on only where fields are insufficiently smooth with respect

to the grid scale. When the models are combined with high-wavenumber-

preserving schemes, a dealiasing filter is required to meet stability constraints

and help localize the numerical dissipation. The stencils for the filters and

derivative operators in the AFLES scheme are all purely centered; hence, the

method is minimally dissipative.

The AFLES scheme outperforms standard ILES methods in resolving the

enstrophy field of the Taylor-Green vortex. By including the bulk viscosity

term in the governing equations, the scheme is able to capture shocks without

excessive damping of vorticity. Artificial thermal conductivity helps remove

ringing at heat fronts, while artificial diffusivity helps keep mass fractions

within bounds. The five empirical coefficients appearing in the models have

been found to exhibit fairly universal behavior; i.e., they appear to work for

a wide variety of flows without adjustment. The AFLES method presented

herein provides a simple and effective approach to LES when the Reynolds

number, Mach number and/or Schmidt number of a flow is beyond the reach

of DNS.
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